
A new method for drawing Algebraic Surfaces

Richard Morris

University of Liverpool

1 Introduction

In this paper we describe a program for drawing algebraic surfaces inR

3

. Strictly speaking

it draws the zero sets f

�1

(0) of implicit polynomials

f : R

3

! R. The program produces a model of the surface which can be viewed using

a general rendering package. The program has been specially designed to draw singular

surfaces accurately and �nd all the components of the surface.

There are many programs already existing which do this to a limited extent. Programs

to draw surfaces of the type z = f(x; y) have been around for a number of years. CAD

systems can draw speci�c types of algebraic surfaces but not normally singular ones. There

are a few existing programs which draw general algebraic surfaces. Ray tracers [5] can

be used to produce beautiful pictures of algebraic surface but they are slow and only

gives the view from one direction. Other programs such the contour tracer written by the

Geometry Supercomputer Project [2], produce good results but do not pay mush attention

to singularities and may give topologically incorrect results.

A hybrid method has been used in the algorithm using recursive sub-division, Bernstein

polynomials and a little di�erential geometry. The division of the surface into cells also

plays an important part in the algorithm.

Thanks must go to R. Martin who introduced me to A. Geisow's method [3] for drawing

algebraic curves in the plane which is based on Bernstein polynomials, D. Marsh for useful

conversations and an overview of possible techniques, C. Gibson for doubting whether it

was possible and hence providing the motivation and �nally all those in the Liverpool

University Pure Mathematics Department who produced many practical examples to test

the routine on.

The pictures produced in this paper have been produced using an implementation of

the algorithm running on a Silicon Graphics Iris 4D-GT graphics workstation provided by

the S.E.R.C. under a computer science initiative grant. The models were displayed using

the geomview package written at the Geometry Center, University of Minnesota.

2 A parade of surfaces

Before we start discussing the algorithm for drawing algebraic surfaces it is worth looking

at some examples of what we might expect. An equation f(x; y; z) = 0 will typically

de�ne a surface, however it can also de�ne a curve (x

2

+ y

2

= 0), or an isolated point

(x

2

+ y

2

+ z

2

= 0).

If all three partial derivatives

@f

@x

,

@f

@y

,

@f

@z

are non-zero at a point on a surface then the

surface is smooth at this point. If

@f

@x

= 0,

@f

@y

6= 0,

@f

@z

6= 0 at a point of a surface then

the surface is smooth at that point and the x-axis is tangent to the surface at that point.

Such points generally lie along curves on the surface. If

@f

@x

= 0,

@f

@y

= 0,

@f

@z

6= 0 then

0



Mathematics of Surfaces IV 1

the surface is smooth and the x-y plane is tangent to the surface. Generically such points

are isolated, lying at the intersections of the curves

@f

@x

= 0 and

@f

@y

= 0. For the surface

x

2

+ y

2

� z = 0 shown in Fig. 1 all the points on the curve x = 0, y

2

= z, satisfy

@f

@x

= 0,

all the points on the curve y = 0, x

2

= z, satisfy

@f

@y

= 0 and at the origin both partial

derivatives vanish. It is possible for two partial derivatives to vanish along a curve on the

surface. An example of this is the surface (x� y)

2

+ z = 0 where

@f

@x

=

@f

@y

= 0 along the

curve x = y, z = 0. Very exceptionally we can expect one of the derivatives to vanish at

all points of the surface. For example the plane y + z = 0 has

@f

@x

= 0 everywhere and the

plane z = 0 will have

@f

@x

=

@f

@y

= 0 at all points of the plane.

Figure 1. Two smooth surfaces showing curves along which the partial derivatives

vanish

If all three partial derivatives vanish then the surface is singular. Generically the

singular points are isolated. In fact all the germs of maps R

3

! R which have �nite

positive co-dimension have isolated singularities. For example the germs A

k

, (normal

form x

k+1

� y

2

� z

2

), D

k

, (normal form x

2

y � y

k�1

� z

2

) and E

6

, E

7

, E

8

(normal forms

x

3

� y

4

� z

2

, x

3

+ xy

3

� z

2

, and x

3

+ y

5

� z

2

) all have isolated singularities at the origin.

Some of these surfaces are shown in Fig. 2. See [1] pp158{166 for a classi�cation of germs

of maps from R

3

to R and [4] for a gentle introduction to Singularity theory.

Figure 2. Zero contours of some of the standard germs

Not all surfaces have isolated singularities. A result of Whitney shows that the image of

a stable map from a 2-manifold into 3-space typically consist of smooth points, transverse

intersections (xy = 0), triple points (xyz = 0) and cross-caps (x

2

z + y

2

= 0), which are

shown in Fig. 3. Note that when given algebraically a cross-cap also contains a line, which

is the analytic continuation of the self-intersection curve.

Figure 3. A cross-cap and a triple point

The intersection of two surfaces will generically give a curve which may itself be singu-

lar. For example the intersections of x

2

+ z = 0 and y

3

+ z = 0 is the curve x

2

= y

3

= �z

which has a cusp at the origin. The intersection of two surfaces, f = 0, g = 0 can be

expressed algebraically as f

2

+ g

2

= 0. The union of two surfaces, fg = 0, will have

self-intersection along the curve of intersections.



2 Morris

Another interesting type of surface is a bifurcation set. For a three parameter family

of functions, f

abc

: R

n

; 0 ! R

p

; 0, the bifurcation set is the set of parameter values in

parameter space for which the function is not stable. For example the quartic equation,

x

4

+ ax

2

+ bx + c = 0, will have a repeated root if the discriminant, �4c

3

b

2

� 27b

4

+

16ac

4

� 128a

2

c

2

+ 144ab

2

c + 256a

3

, is zero. The set of parameter values (a; b; c) 2 R

3

for which this holds gives a swallowtail surface Fig. 4. The smooth part of this surface

correspond to functions with one repeated real root, the cuspidal edges to functions with

one real root repeated three time, the self-intersection curve to functions with two repeated

real roots and the origin to the function x

4

. This algebraic surface also contains a tail,

b = 0, 4a = c

2

, c � 0, which corresponds to a repeated complex root, this is not normally

thought of as part of the discriminant surface. Note this surface shows the limits of the

current algorithm, and there are some mistakes in the model produced, see section 5, for

a discussion of why these errors occurred.

Figure 4. A swallowtail surface

One particularly nasty example of a singular function is the square of a function f

2

= 0

which is singular at all points of the surface.

3 Bernstein polynomials

The computations involved in the program are made much simpler by the use of Bernstein

polynomials. To simplify the discussion we will look at the one-dimensional case. All the

results below can be easily adapted to work for higher dimensions. All the results in this

section are well known and the algorithms have been taken from a method for drawing

algebraic curves in 2D, described by A. Geisow [3].

A Bernstein polynomial B(x) of degree n is written as

B(x) =

n

X

i=0

b

i

�

n

i

�

(1� x)

i

x

n�i

: (3.1)

The b

i

's are the Bernstein coe�cients. We are only interested in Bernstein polynomials

which are de�ned over the range [0; 1].

3.1 A test for zeros

The most useful property of Bernstein polynomials is a simple test for zeros. If all the

Bernstein coe�cients have the same sign, (all strictly positive or all strictly negative),

then the polynomial has no zeros between 0 and 1. This is easily proved by noting that

(1 � x)

i

x

n�i

is non-negative for x 2 [0; 1] and 0 � i � n. Note the converse does not

always hold and it is possible to construct a Bernstein polynomial which has coe�cients

of di�erent signs but no zeros on [0; 1]. We have to check the signs of n coe�cients so this

algorithm is of order n.



Mathematics of Surfaces IV 3

3.2 Derivatives of Bernstein Polynomials

The second useful property is any easy way of �nding the derivatives. For the Bernstein

polynomial, B(x), above the derivative is

B

0

(x) =

n�1

X

i=0

n(b

i+1

� b

i

)

�

n � 1

i

�

(1 � x)

i

x

n�i�1

:

This is a Bernstein polynomial of degree n�1 with coe�cients n(b

i+1

�b

i

). This algorithm

is of order n.

3.3 Constructing a Bernstein Polynomial

We need a method for constructing a Bernstein polynomial, B(y), de�ned over [0; 1],

from a polynomial p(x) =

P

a

i

x

i

de�ne over [x

l

; x

h

]. We require B(y) = p(x) where

y = (x� x

l

)=(x

h

� x

l

). First we de�ne a sequence p

i

(x) of polynomials of degree i which

satisfy the properties,

p

0

(x) = a

n

;

p

i

(x) = a

n�i

+ xp

i�1

(x):

Note that the �nal polynomial in this sequence, p

n

(x), is our polynomial p(x). We now

convert each of the p

i

(x) into polynomials

B

i

(y) =

i

X

j=0

b

i;j

(1� y)

j

y

i�j

:

This is not quite a Bernstein polynomial as the binomial coe�cients are missing. Now

B

i

(y) = p

i

(x) = a

n�1

+ xp

i�1

(x)

= a

n�i

+ xB

i�1

(y)

= a

n�i

((1� y) + y)

n

+ (x

l

(1� y) + x

h

y)

0

@

i�1

X

j=0

b

i�1;j

(1� y)

j

y

i�1�j

1

A

:

So the coe�cients of B

i

are:

b

0;0

= a

n

;

b

i;0

= a

n�i

+ x

l

b

i�1;0

;

b

i;j

=

�

n� i

j

�

a

n�i

+ x

l

b

i�1;j

+ x

h

b

i�1;j�1

;

b

i;i

= a

n�i

+ x

h

b

i�1;i�1

;

where 1 � j < i � n. We can now proceed inductively by degree to get an expression for

B

n

(y). The �nal step is to divide by the binomial coe�cients to get the required Bernstein

polynomial.

3.4 Evaluating a Bernstein Polynomial

We will frequently need to evaluate a Bernstein polynomial (3.1) at a point x = y. Let

B

i;j

(x) =

i

X

k=0

b

j+k

�

i

k

�

(1� x)

i�k

x

k

:



4 Morris

We observe that

B

0;j

(x) = b

j

;

B

i;j

(x) = (1� x)B

i�1;j

(x) + xB

i�1;j+1

(x):

Now, let b

i;j

= B

i;j

(y). We have

b

0;j

= b

j

;

b

i;j

= (1� y)b

i�1;j

+ yb

i�1;j+1

;

for 1 � i � n, 0 � j � n � i. This gives us an inductive process which ends when we

have calculated b

n;0

= B

n

(y) = B(y). This routine uses (n � 1)(n� 2) multiplications to

evaluate a Bernstein polynomial of degree n, so the algorithm is of order n

2

. A short cut

can be taken if we wish to calculate B(0) or B(1) which are b

0

and b

n

.

3.5 Splitting a Bernstein Polynomial

The �nal algorithm we need is to split the polynomial, B

n

(x) into two polynomials,

B

+

n

(y) = B

n

(y=2) and B

�

n

(y) = B

n

((y � 1)=2). This will be useful in the recursive

sub-division process where to �nd the solutions in [0; 1] we look for the solutions in [0;

1

2

]

and [

1

2

; 1]. Again we work inductively by degree de�ning polynomials, B

+

i;j

(y) = B

i;j

(

y

2

),

B

�

i;j

(y) = B

i;j

(

(y�1)

2

). Now

B

+

0;j

(y) = b

j

;

B

+

i+1;j

(y) = B

i+1;j

(y=2)

= (1� y=2)B

i;j

(y=2) +

1

2

yB

i;j+1

(y=2)

= (1� y)B

+

i;j

(y) +

1

2

y

�

B

+

i;j

(y) +B

+

i;j+1

(y)

�

:

which is a polynomial in y. Similarly

B

�

0;j

(y) = b

j

;

B

�

i+1;j

(y) =

1

2

(1 � y)

�

B

�

i;j

(y) +B

�

i;j+1

(y)

�

+ yB

�

i;j+1

(y):

So if we know the coe�cients of B

�

i;j

for 0 � j � n� i we can calculate the coe�cients of

B

�

i+1;j

. This routine is also of order n

2

.

3.6 Bernstein Polynomials in three dimensions

In three dimensions the Bernstein basis elements for polynomial of degrees l, m, n in x,

y, z, are of the form

�

l

i

��

m

j

��

n

k

�

(1� x)

i

x

l�i

(1� y)

j

y

m�j

(1� z)

k

z

n�k

;

where 0 � i � l, 0 � j � m and 0 � k � n. The routines to evaluate a Bernstein

polynomial and to split a polynomial into eight are both of order max(l

2

mn; lm

2

n; lmn

2

).

The routines to test for zero and to �nd the partial derivatives are of order lmn.



Mathematics of Surfaces IV 5

4 Drawing the surface

Let f(x; y; z) be a polynomial of �nite degree. We wish to draw the set given by f

�1

(0)

inside a bounding box, [x

l

; x

h

]�[y

l

; y

h

]�[z

l

; z

h

]. We will assume that none of the derivatives

vanish at all points of the surface and also that the surface is in general position.

The �rst step is to rescale the coordinates to �t the unit box [0; 1]� [0; 1]� [0; 1], and

construct a Bernstein polynomial b using the three dimensional version of the algorithm

given in section 3.3.

To get a basic level of approximation we divide the bounding box into a number of

smaller sub-boxes. An approximation of the surface will be calculated in each of these

sub-boxes.

The three dimensional version of the splitting algorithm given in section 3.5 gives

eight Bernstein polynomials each each of which is de�ned on a box whose sides are half

the length of the original box. The splitting process is recursively repeated a prede�ned

number of times. Three levels of recursion were found to give a reasonable approximation

which can be calculated in a fairly short time. Furthermore, the resulting model is small

enough for the rendering program to handle well and allow near instantaneous rotation of

the surface.

4.1 Cellular division of the surface

Within each box we divide the surface into 0-cells, 1-cells and 2-cells. The 2-cells consist

of points where none of the partial derivatives vanish. Points on the surface where a least

one of the partial derivatives vanish make up the 1-cells and 0-cells. If these points form a

curve then the curve will be called a 1-cell otherwise the point will be a 0-cell. Typically

the 1-cells consist of the curves

@f

@x

= 0,

@f

@y

= 0,

@f

@z

= 0, transverse self-intersections of

the surface, curves where the surface degenerates to a curve and curves along which two

or more of the derivatives vanish. Examples of 0-cells are the points where the curves

@f

@x

= 0, and

@f

@y

= 0 intersect, isolated points and other isolated singularities. The cross-

cap, x

2

z+y

2

= 0, can be split into four 2-cells, four 1-cells and a 0-cell as shown in Fig. 5.

Figure 5. Dividing a cross-cap into cells

A few assumptions about the surface are necessary to avoid degenerate cases. We

assume that none of the 0-cells lie on the faces of the box, none of the 1-cells intersect the

edges and that no 2-cells intersect the corners of the box. A further assumption is that 1-

cells intersect the faces in isolated points which we shall call nodes. All these assumptions

are satis�ed for a surface in general position. Any surface can be put in general position

by applying a small translation.

4.2 Approximating the cells within a box

The intersection of each 2-cell with the edges of the box are represented by a set of points.

An algorithm for �nding these points is given in the next section, (4.3).



6 Morris

The intersection of a 2-cells with a face of the box is approximated by a straight lines

whose end points are either solutions on the edge or nodes in the interior. The algorithm

to �nd the nodes is given in section 4.4.

Within each box the 1-cells are approximated by straight lines whose end points are

either nodes on the faces of the box or 0-cells lying in the interior. Each 2-cells is approx-

imated by a facet whose boundary is made up of a set of straight lines. These lines are

either the approximations of the 1-cells or the lines approximating the intersection of the

2-cell with the faces of the box. The algorithm for �nding 0-cells is given in section 4.5.

For the cross-cap shown in Fig. 5, the surface will be approximated as shown in Fig. 6.

Note that by including points where one or two of the partial derivatives vanish we obtain

an approximation which does not truncate the surface.

Figure 6. approximating the cross-cap of Fig. 5 by a set of facets and lines

4.3 Finding solutions on edges

The �rst step in constructing an approximation of the surface is to �nd the solutions along

the edges of the box. These can easily be found using a simple 1-dimensional sub-division

algorithm.

We construct the 1-dimensional Bernstein polynomials for the restriction of the func-

tion to the edge. If all the coe�cients of the Bernstein polynomial are the same sign then

we know that there is no solution on the edge (Fig. 7 A). Otherwise we check the partial

derivatives. If the Bernstein coe�cients are all of one sign for each of the partial derivatives

then there is exactly one solution. (Fig. 7 B). This solution can be found by repeatedly

sub-dividing the edge and looking for a change of sign. The sub-division is carried out

until sub-pixel level is reached. If the coe�cients of any of the partial derivative are not all

the same sign then we split the edge into two, calculating the new Bernstein polynomials

for each of the sub-edges, and repeat the process. (Fig. 7 C).

Figure 7. Finding solutions on an edge

4.4 Finding nodes on faces

Another recursive procedure is needed to �nd the intersection of the 1-cells with the faces

of the box. This is a two dimensional algorithm which is computationally slower than

the 1-dimensional case. However, not all the faces will need to be tested so the e�ect on

execution time will not be too great. This routine is also used to tell which of the solutions

on the edges lie on the same 2-cells to ensure that we get the correct topology.



Mathematics of Surfaces IV 7

First we take a face, F , and construct the 2-dimensional Bernstein polynomial, b. We

also construct the Bernstein polynomial of the three partial derivative functions. If the

coe�cients of b are all one sign then the surface does not intersect the face and we can

ignore this face. If the coe�cients of b are not all of one sign and the coe�cients of each of

the partial derivative are all of one sign, then there are exactly two solutions on the edges

of the face. These solutions will lie on the same 2-cell. If any of the derivatives fail to be

all of one sign we divide the face into four sub faces testing each in turn. This process is

carried out recursively until a pre-de�ned depth, typically pixcel level, is reached.

When the bottom level of recursion is reached we might expect a 1-cell to intersect

the sub-face in which case we create a node in the center of the face. However, this is not

always the case and it will cause problems later if points are incorrectly marked as such.

We need to look at the geometry a little more closely to tell if a face contains a node or

not.

If only one of the derivatives, say

@f

@x

, fails to be all of one sign then we test for turning

points, e.g. x

2

+ y + z = 0, or higher inections, e.g. x

n

+ y + z = 0. Two points, a, b on

the edges of the face will belong to the same 2-cell if

@f

@x

(a) and

@f

@x

(b) have the same sign

and

@

2

f

@x

2

is all of one sign. If

@f

@x

(a) and

@f

@x

(b) have di�erent signs then the points lie on

di�erent 2-cells. Both 2-cells will be adjacent to a 1-cell passing through the sub-face so

we create a node in the middle of the sub-face. If

@f

@x

has the same signs for the two points

and

@

2

f

@x

2

is not all of one sign then we cannot always distinguish whether the two points lie

on the same 2-cell. We err on the side of caution and assume they do not, creating a node

in the middle of the sub-face. It is possible to have four solutions lying on the edges and

here we check the solutions pairwise to see which lie on the same 2-cells. In the example

shown in Fig. 8 the partial derivative

@f

@x

will have di�erent signs at the points a, b so a

node lies within face A. On face B the points a and c have the same sign of

@f

@x

, points

b and d also have the same signs. Hence two 2-cells intersect the face and there are no

nodes on the face. On face C points d and e have the same signs of

@f

@x

but

@

2

f

@x

2

vanishes

so we assume that a node lies on the face.

Figure 8. Faces where one of the partial derivatives vanishes

In the case when two of the derivatives, say

@f

@x

and

@f

@y

fail to be all of one sign we

�rst test that all the second derivatives,

@

2

f

@x

2

,

@

2

f

@xy

and

@

2

f

@y

2

are all of one sign and that the

curves

@f

@x

= 0 and

@f

@y

= 0 do not intersect. If the last condition fails then the intersection

with the x-y-plane may form an isolated point, e.g. x

2

+y

2

= 0, or two intersecting curves,

e.g. x

2

� y

2

= 0. We can test this condition by �nding the two solutions to

@f

@x

= 0 round

the edges and seeing if

@f

@y

has the same sign at the two points. If any of the above fail

then it is assumed that there is a node in the interior of the face. If the above conditions

are all satis�ed we check the solutions pair-wise to see if their derivatives have the same

sign, if so they must lie on the same 2-cell. In the examples shown in Fig. 9 the points a,

b, c all have the same sign for each of the partial derivatives. The points d, e, f also have

the same sign. The curves

@f

@x

= 0 and

@f

@y

= 0 intersect on face B but not in A hence a

node lies on face B but not on face A.



8 Morris

Figure 9. Faces where two partial derivatives vanish

The case where all of the partial derivatives fail to be all of one sign follows similarly

to above. This is actually more likely as it is the condition for a self-intersection of the

surface to pass through the face.

4.5 Finding 0-cells in boxes

Once we have calculated an approximation for each of the faces of a box, B, we work out

how the nodes are joined within the box and �nd any 0-cells in the box. Again we use a

recursive procedure; this time it works in three dimensions so can be expensive. However,

we only expect a small number of 0-cells, so the routine will not be used very often. To

make it a little faster we stop the recursion a little above pixcel level, but not so it is

apparent to the naked eye.

Again for each box we test whether the coe�cients of the Bernstein polynomial are all

of one sign in which case there is no component of the surface in the box. If the coe�cients

of the Bernstein polynomials for each of the partial derivatives are all of one sign then

there are no 0-cells or 1-cells in the box so we can ignore the box. If one or more of the

partial derivatives fail to be all of one sign we count the number of nodes on the faces of

the box. If there are two nodes for which the signs of the partial derivatives match, either

both zero, both positive or both negative, then we assume that they both lie on the same

1-cell. If there are four nodes, we check the signs of the partial derivatives pairwise so see if

they lie on the same 1-cell. Isolated points only occur if all three derivatives are zero so we

can also disregard boxes where there are no nodes on the faces and one of the derivatives

is all of one sign. If none of the above happen we cannot easily tell what happens in the

box so we sub-divide it into eight sub-boxes, calculating the positions of the solutions and

nodes on the edges and the faces of the sub-boxes. When the bottom level is reached then

the sub-box is assumed to be a 0-cell, any of the 1-cells which pass through the faces of

the box are assumed to have the 0-cell as an end point.

5 Conclusion

This program has already shown its usefulness in producing accurate models of surfaces

with isolated singularities in a matter of minutes. For smooth surfaces the routine is even

quicker running in under a minute. The pictures produce are not quite the same quality as

those produced by a ray tracer, but the advantages of producing three dimensional models

within seconds means the program is a very useful as a mathematical tool.

Problems start to arise when we consider cuspidal edges or more exotic surfaces. Along

a cuspidal edge several of the higher order partial derivatives vanish, causing some of the

tests to give incorrect results. Even here the program will produce a good model of the

surface away from the singularities and a user can quickly tell what type of singularity

you have. A \dust" of isolated points may surround the cuspidal edges as shown in

Fig. 4. Running times can slow down dramatically as the routine to �nd isolated points is



Mathematics of Surfaces IV 9

computationally expensive. The routine also has di�culties if the surface contains planes

parallel to the sides of the boxes.

If we look at the mathematics behind the algorithm we �nd that the tests for nodes

and 0-cells are too weak and the test for whether two nodes belong to the same 1-cell is

too strong. These errors, may give rise to spurious points or facets which have the wrong

vertices. Some improvements could be made by examining the higher derivatives but this

would also slow the program down considerably. This will not solve all the problems as all

the partial derivatives of the functions f(x; y; z)+c = 0 are identical for all values of c, but

the resulting surfaces may have di�erent topologies. Checking the signs of the Bernstein

coe�cients does not always help as the coe�cients may have di�erent signs even when

the function has no solutions. Some other test, for example the generalization of Sterm

sequences to two and three dimensions discussed in [6], could be used to give a foolproof

algorithm.

We have not mentioned many of the subtleties of the implementation, which improve

performance. For example the solutions on edges and faces are only found once. These

solutions being used each time the edge or face is examined.

The author was supported by a grant from the S.E.R.C.

References

[1] V. I. Arnold, 1981: Singularity Theory. London Mathematical Society Lecture Notes

53.

[2] D. P. Dobkin, S. V. F. Levy, W. P. Thurston, A. R. Wilks, 1988: Contour Tracing by

Piecewise Linear Approximations I & II. Research report, Geometry Supercomputer

Project, University of Minnesota.

[3] A. Geisow, 1982, Surface Interrogation, Ph.D. thesis, University of East Anglia.

[4] C. G. Gibson, 1979: Singular points of smooth mappings. Research Notes in Mathe-

matics, 23.

[5] D. Kalra, A. H. Barr, 1989: Guaranteed Ray Intersection with Implicit Surfaces.

Computer Graphics, 23(3) 297{304.

[6] P. Milne, 1991, Zero set of Multivarient Polynomial Equations, Mathematics of Sur-

faces IV.


