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Abstrat. Algebrai surfaes, de�ned as the zero set of a polynomial funtion

in three variables, present a partiular problem for visualising, espeially if the

surfae ontains singularities. Most algorithms for onstruting a polygonization of

the surfae will miss the singular points. We present an algorithm for polygonizing

suh surfaes whih attempts to get aurate representations of the singular points.

A lient-server approah, with a Java applet and a C program as bakend, is used

to enable the visualisation of the polygonal mesh in a web browser. This system

allows algebrai surfaes to be viewed in any web browser and on any platform.

1 Introdution

Algebrai surfaes, de�ned as the zero set of a polynomial funtion in three

variables, have a long history in mathematis. There are many famous sur-

faes suh as Steiner's Roman Surfae, Fig. 1(a), an immersion of the real

projetive plane, whih is represented as the algebrai surfae x
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Algebrai surfaes often ontain singular points, where all three partial

derivatives vanish. For example the double one, x
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= 0, has an
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singularity or node at the origin, Fig. 1(b). There are other more om-

pliated isolates singularities suh as: x
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y � y

3

� z
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= 0 whih has a D

4

singularity, Fig. 1(). Other surfaes are more ompliated and an ontain

self-intersetions, xy = 0, and degenerate lines, x
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= 0. The ross-

ap or Whitney umbrella, x
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= 0 ontains a self intersetion along

x = z = 0, y > 0 and a degenerate line along x = z = 0, y < 0. The

line forms the `handle' of the umbrella, Fig. 1(d). The swallowtail surfae,
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= 0, is even more om-

pliated and ontains a uspidal edge, Fig. 1(e). These and other examples

of algebrai surfaes will be further examined in setion 4.

These singularities ause partiular problems for onstruting omputer

models of the surfaes. Many algorithms will simply ignore the singular

points [2,10℄. However if information about singularities is inluded from the

ground up it is possible to onstrut an algorithm, desribed here, whih an

produe good 3D models of most algebrai surfaes.

The surfaes are displayed in a web-page using a Java applet whih uses

the JavaView library [12,13℄ to allow rotation of the surfae. This applet
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(a) Steiner's Roman

Surfae

(b) A

1

singularity () D

4

singularity

(d) A ross-ap (e) A swallowtail

Fig. 1. Some algebrai surfaes

onnets to a server on the Internet whih atually alulates polygonization

of the surfae.

The program desribed here has been adapted from an earlier program [8,9℄

whih ran as a standalone appliation on SGI mahines and used the Ge-

omview [11℄ program for visualisation. The prinipal improvements have been

the Java interfae and an improved method of �nding the polygonization 3.5.

2 The lient applet

The lient side of the system is fairly straightforward. It onsists of a Java

applet written using the JavaView library. It has two panels, one of whih

displays the surfae and allows the surfae to be rotated and saled using the

mouse. The other panel ontains an area to input the equation of the surfae

as well as ontrols for seleting the region spae in whih the surfae will be

alulated. Several prede�ned equations are provided. These inlude many

well known algebrai surfae. The syntax of equations is standard TeX style

notation and allows sub-equation to be de�ned as well as allowing a symboli

di�erentiation operator and vetor operations. The user interfae is shown in

�gure 2.

A button press auses the surfae is to be alulated. A CGI-POST re-

quest, whih enodes the de�ning equation and options, is sent to the server
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Fig. 2. The user interfae for the program

whih then alulates a polygonization of the surfae. This is then returned

to the lient in JavaView's JVX format. If the de�ning equation is very de-

generate, say a reduible equation like x

2

= 0, then the server an take a long

time to alulate the surfae. To prevent this happening a maximum alu-

lation time is spei�ed by the user. If this time limit is exeeded then the

alulation of the surfae will end prematurely. Ideally an interrupt button

ould be provided to halt the alulation of the surfae, but this annot be

ahieved using the CGI protool.

Due to Java seurity restritions the Java applet an only onnet to

servers whih lie on the same Internet host. This makes it diÆult for users to

modify the applet or inlude it in their own software. This ould be overome

by signing the Java ode.

3 The server

The server takes the de�ning equation, f(x; y; z) = 0, of an algebrai surfaes

and produes a ploygonization of the surfae inside a retangular box spei�ed

by the user.

The basi algorithm starts with a retangular box. Reursive sub-division

is used to split that box into 8 smaller boxes, the edge-lengths of the whih are

half those of the original box. Inside eah of the smaller box a test based on

Bernstein polynomials (Se. 3.1) is used to determine whether the box might

ontain part of the surfae. In suh ase the reursion ontinues breaking

the box into eight more boxes. We found that three levels of reursion, giving

boxes whose edge lengths are an eighth of those of the original box, are enough
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to give a ourse representation of the surfae and four levels of reursion

produe quite a detailed model.

After this reursion eah of the smaller boxes is examined in greater detail.

Three types of points are found (Fig. 3):

1. Points on the edges on the box where f = 0.

2. Points on the faes of the box where f = 0 and at least one of partial

derivatives,

�f

�x

,

�f

�y

or

�f

�z

vanish. We shall all these 2-nodes.

3. Points in the interior of the box where f = 0 and at least two of the

partial derivatives vanish. We shall all these 3-nodes.

Reursive algorithms are used for eah of these steps whih are desribed in

setions 3.2, 3.3 and 3.4.

Fig. 3. The types of solutions found in a box

Finally the points found are onneted together to give a polygonization

of the surfae whih is returned to the lient (Se. 3.5).

A few assumptions about the surfae are neessary to avoid degenerate

ases: that the surfae does not interset the orners of the box; that none

of the partial derivatives vanish at the solutions on the edges of the box;

and that the 2-nodes on the faes of the box are isolated. Provided that the

polynomial is not reduible, i.e. not of the form h(x; y; z)(g(x; y; z))

2

= 0,

then all these assumptions an be satis�ed by putting the surfae in general

position. This an always be ahieved by slightly hanging the bounds of the

box. Typially the domain needs to be onstruted with unequal bounds so

that the origin, whih is often a singular point does not lie at a orner of a

box.



Visualisation of Algebrai Surfaes 5

3.1 Bernstein polynomials

The omputations involved in the program are made muh simpler by the use

of Bernstein polynomials. These o�er a quik test to see if a polynomial might

have a zero inside a domain. All the results in this setion are well known and

the algorithms have been taken from a method for drawing algebrai urves

in 2D, desribed by A. Geisow [6℄ and details of the implementation an be

found in [8℄.

A 1D Bernstein polynomial B(x) of degree n is written as

B(x) =

n
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polynomials whih are de�ned over the range [0; 1℄. In three dimensions the

Bernstein representation of a polynomial of degrees l, m and n in x, y, and

z is
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A test for zeros

If all the Bernstein oeÆients of a 1D Bernstein polynomials have the same

sign, all stritly positive or all stritly negative, then the polynomial has

no zeros between 0 and 1. A similar result happens in the 3D ase. This is

easily proved by noting that (1 � x)

i

x

n�i

is non-negative for x 2 [0; 1℄ and

0 � i � n. Note the onverse does not always hold and it is possible to

onstrut a Bernstein polynomial whih has oeÆients of di�erent signs but

no zeros on [0; 1℄.

Other algorithms

Several other routines are neessary for the operation of the program:

� onstruting a Bernstein polynomial from a standard polynomial, this

involves resaling the domain so that it �ts [0; 1℄,

� evaluating a Bernstein polynomial at a spei� point,

� alulating the derivative of a Bernstein polynomial,

� splitting the domain into two equal halves and onstruting Bernstein

polynomials for eah half.

The last of these algorithms is neessary for the reursion steps, where a box

is split into 8 smaller boxes.
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3.2 Finding solutions on edges

A simple 1-dimensional sub-division algorithm is used to �nd the solutions on

an edge of the box. A 1-dimensional Bernstein polynomials is onstruted by

restriting of the funtion to the edge. If all the oeÆients of the Bernstein

polynomial are the same sign then there is no solution on the edge. Otherwise

Bernstein polynomials are onstruted for eah of the partial derivatives. If

the Bernstein oeÆients for any of the partial derivatives are not all of the

same sign then there may be more than one solution on the edge. In suh

ases the edge is split into two and the proess repeated for eah sub-edge.

Otherwise the signs at the end points are examined to determine whether

there is a solution on the edge. If so, the solution is found by repeatedly

sub-dividing the edge and looking for a hange of sign. The sub-division is

arried out until sub-pixel level is reahed.

3.3 Finding nodes on faes

Another reursive proedure is needed to �nd solutions on the faes of the

box where one or more partial derivatives vanish. This routine is also used

to �nd lines onneting solutions on the fae and its edges.

For a given fae the 2-dimensional Bernstein polynomial b is onstruted.

Bernstein polynomials are also onstruted for the three partial derivative

funtions. There are a number of ase shown in Fig. 4.

� If the oeÆients of b are all of the same sign then the surfae does not

interset the fae and the fae is ignored, Fig. 4(a).

� If the oeÆients of b are not all of the same sign and the oeÆients of

eah of the partial derivative are all of the same sign, then there are ex-

atly two solutions on the edges of the fae. These solutions are onneted

by a line on the fae and the reursion end, Fig. 4(b).

� If the oeÆients of any one of the derivatives fail to be all of the same

sign then the fae is divide into four smaller faes. Eah of these fae,

and its edges, is then reursively tested, Fig. 4(b).

This proess is arried out reursively until a pre-de�ned depth, typially

pixel level, is reahed.

When the bottom level of reursion is reahed the fae may ontain a

node and further proessing is needed to dedue the geometry. If only one

derivative vanishes then there may be a turning point, where f =

�f

�x

= 0

say. Typially there will be one of the situations shown in Fig. 5. These an

be distinguished by ounting the number of solutions on the edges of the fae

and examining their derivatives.

� If there are no solutions then the fae is ignored, Fig. 5(a).

� If there are two solutions and the signs of the derivatives math then they

are linked by a line, Fig. 5(d).
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(b)  face where

(a) face with no solutions

a derivative vanishes

which is sub−divided

(c) face where

      no derivatives

      vanish

Fig. 4. Sub-dividing a fae

� If there are four solutions then they are the tested for signs of their

derivatives pair-wise. Pairs with mathing derivatives are linked by lines.

Fig. 5().

� If there are two solutions whih have di�erent signs for the partial deriva-

tive then a 2-node is onstruted in the entre of the fae and this is linked

to eah of the solutions, Fig. 5(b).

(d)

2−node

f=0

df/dx = 0

(a) (b) (c)

Fig. 5. Faes where one derivative vanishes

Consider the ase shown in �gure 6. Here two partial derivatives vanish

in both faes, yet only one ontains a 2-node. To distinguish between the two

ases observer that the two urves

�f

�x

= 0 and

�f

�y

= 0 only ross in the fae

whih ontains the 2-node. In this fae a 2-node is reated in the entre of

the fae and linked to the eah of the solutions on the edges. In the other

fae the solutions on the edge are linked pair-wise. This situation typially

ours when a self-intersetion of the surfae rosses a fae, in whih ase all

three derivatives will vanish. A similar situation ours when a degenerate
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line passes through the fae: the zero sets of all three derivatives will interset

in a single point. This example illustrates the limits of using reursion, �ner

levels of reursion would not help resolve this ase as the geometry looks

similar even under greater magni�ation.

df/dx = 0

f = 0

df/dy = 0

Fig. 6. Two faes where two derivatives vanish, only the left-hand one ontains a

node

3.4 Finding singularities inside a box

A reursive proedure is used to �nd the 3-nodes inside a box where two

or more derivatives vanish. These an either be singularities where all three

derivatives vanish or points like the north-pole of the sphere, x

2

+y

2

+z

2

= 1,

where two derivatives vanish. Inluding the latter type of point helps produe

better polygonization as it does not trunated the surfae.

This reursion splits eah box into eight sub-boxes and the Bernstein test

is used to tell whether the funtion f or its derivatives vanish.

� If f does not vanish then the box is ignored.

� If none of the derivatives vanish then the box is ignored.

� If only one derivative vanishes then the number of 2-nodes on the faes

of the box is found and the signs of their derivatives is examined.

{ If there are no 2-nodes the box is ignored.

{ If there are two 2-nodes and the signs of their derivatives math then

the 2-nodes are linked by a line and the reursion ends.

{ If there are four 2-nodes then the signs are ompared pair-wise to see

how they link together. Mathing pairs are linked by lines.

� Otherwise, when two or more derivatives vanish, the geometry an not

be easily be established and the reursion ontinues.

When the bottom level of reursion is reahed it is assumed that the box

ontains a singularity (or point like the north pole of a sphere). A 3-node is

onstruted in the entre of the box and linked to eah of the 2-nodes on the

faes of the box. It may also be an isolated point where all three derivatives

vanish but there are no 2-nodes on the faes.

The test for 3-nodes is too strong and it is possible that some points

are inorretly marked as singularities. This is illustrated by the swallowtail

surfae where several inorret isolated points are found near the uspidal

edge, Fig. 7.
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Fig. 7. Inorret isolated points found near the uspidal edge of a swallowtail sur-

fae

3.5 Construting a polygonization

The �nal stage in the algorithm is to onstrut a set of polygons whih

approximate the surfae. This is arried for eah box found in the �rst stage

of the reursion. At this stage there is a set of points linked by lines. Some

of the points lie on the edges and faes of the box and others (3-nodes) may

lie in the interior. However there is no information about whih of the lines

form the boundaries of whih polygons. It would be possible to gather suh

information while �nding the 3-nodes inside the boxes. However, this would

require many more sub-boxes to be examined whih would slow down the

algorithm. Instead a more ad ho algorithm is adopted, for most surfaes

this will give a reasonable polygonization of the surfae and there are only

a few ases where it does not produe a orret polygonization. These ases

typially our when more singularities than really exist have been identi�ed

in Se. 3.4.

The basi idea behind the algorithm is to onstrut polygons whose edges

just onsist of the lines on the faes of the box and then modify the polygon

so that they inlude the internal lines. As a preursor to the main algorithm

two sets of lines are found:

� Cyles: losed loops of lines whih lie on the faes of the box.

� Chains: onneted sets of lines joining 3-nodes in the interior of the box

and 2-nodes on its faes. The end-points of eah hains will be 2-nodes

on the faes of the box.

For many simple ases where there are no internal points there will be no

hains and the yles will form the boundaries of the polygons. For other

ases some re�nement is neessary:

� If the yle forms a �gure of eight shape, the yle is split into two yles

whih ontain no self intersetions. This situation ours when the surfae

has a self-intersetion.
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� If there are two disjoint yles whih are linked by a two or more non-

interseting hains then the surfae will form a ylinder. In suh ases

two new yles are formed. Eah form half the ylinder split along the

hains Fig. 8.

� If two points on a yle are linked together by a hain then two new yles

are formed whih inlude the lines in the hain and some of the edges of

the original yle.

Chains

h g
fe

d c
b

a
Cycle

Cycle

Fig. 8. Construting a ylinder. The yles a-b--d and e-f-g-h and the hains a-e,

-g are linked to form two yles a-b--g-f-e and -d-a-e-h-g

b−c−d−e, d−a−e

b

cycles: a−b−e, b−c−d−a−e

d

c

b

a

cycle: a−b−c−d

Cycle

Chains

a

c

d

ee

d

c

b

a

a
b

c

d

ee

cycles: a−b−ecycles: a−d−e,

b−c−e, c−d−e, d−a−e

Fig. 9. Steps in the proess of reating a polygonization of the top half of a sphere.

Stating with a yle and four hains the lines in the hains are progressively added

to reate four yles used for the polygonization
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These re�nement happen until no more re�nement are possible. The yles

then form the boundaries of the polygons. An example of this proess is shown

in Fig. 9 where three steps are needed to produe the �nal set of yles. In

pratie the geometry is often more ompliated that this example, Fig. 10

shows the polygonization for four boxes near a D

4

singularity. Note that

several 3-nodes have been found near the singularity and the topology of the

objet is not quite orret.

Fig. 10. A lose-up of the D

4

singularity showing the polygons found. Note how too

many 3-nodes have been found leading to a topologially inorret polygonization

4 Examples of Algebrai Surfaes

One area of study involving algebrai surfaes is singularity theory [3℄. An

important theorem of V. I. Arnold, [1, pp. 158{166℄ lassi�es the types of

simple singularities whih our for funtions R

n

! R. These onsist of two

in�nite sequenes: A

k

; k � 1, D

k

; k � 4 and three other singularities E

6

, E

7

and E

8

. The normal forms of these for funtions R

3

! R are

� A

k

: �x

k+1

� y

2

� z

2

, where k � 1,

� D

k

: �x

k�1

+ xy

2

� z

2

, where k � 4,

� E

6

: �x

4

+ y

3

� z

2

,

� E

7

: x

3

y + y

3

� z

2

,

� E

8

: x

5

+ y

3

� z

2

.

Further singularities exist whih are not tehnially simple, however these

have higher o-dimensions and are less frequently enountered. The zero sets

of some of these normal forms are shown in Figures 1 and 11.

The singularities mentioned above are the only ones whih our in generi

families of funtions R

n

! R. In partiular the singularities are always iso-

lated. However, many of the well known funtions are deidedly non-generi

and an ontain self intersetions, triple points, degenerate lines, ross-aps
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(a) A

3

(b) D

6

() E

7

Fig. 11. Zero sets of the normal forms of some singularities

and uspidal edges. Steiner's Roman surfae is an example whih ontains

six ross aps.

Disriminant surfaes are an important lass of surfaes whih are not

generi when viewed as funtions. Consider the family of quarti polynomials

f(t) = t

4

+ zt

2

+ yt+ x, whih will have a repeated root whenever f(t) = 0

and

df

dt

= 4t

3

+2zt+y = 0. Solving these equations for t gives the swallowtail

surfae �4z

3

y

2

� 27y

4

+ 16xz

4

� 128x

2

z

2

+ 144xy

2

z + 256x

3

= 0 (Fig. 12).

Points of this surfae will give values of x, y, z for whih f(t) will have

a repeated root. Furthermore, if the point lies on the uspidal edge then

d

2

f

dt

2

= 0 and f(t) has a triple root. The self-intersetion of the surfae gives

those polynomials where f(t) has two repeated roots. There is also a tail

whih gives polynomials whih have two omplex onjugate repeated roots.

Finally the swallowtail point x = y = z = 0 orresponds to the polynomial

t

4

= 0.

Fig. 12. The disriminant surfae for t

4

+ zt

2

+ yt+ x showing the types of roots

whih an our.
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An interesting area of study is to �nd low degree algebrai surfaes whih

ontain many nodes [4℄. Some examples of these inlude:

� Cayley's ubi, a ubi surfae with the maximum of four nodes, 4(x

2

+

y

2

+ z

2

) + 16xyz = 1, Fig. 13(a).

� Kummer surfaes, a family of quarti surfaes some of whih have 16

nodes (3 � v

2

)(x

2

+ y

2

+ z

2

� v

2

)

2

� (3v

2

� 1)(1 � z � x

p

2)(1 � z +

x

p

2)(1 + z + y

p

2)(1 + z � y

p

2) = 0, Fig. 13(b).

� Barth's sexti with 65 nodes 4(�

2

x

2

� y

2

)(�

2

y

2

� z

2

)(�

2

z

2

� x

2

) � (1 +

2�)(x

2

+ y

2

+ z

2

� 1)

2

= 0 where � = (1 +

p

5)=2, Fig. 13().

These prove to be good test ases for the algorithm, whih produes good

but not perfet representations of the surfae.

(a) Cayley's ubi (b) Kummer Sur-

fae

() Barth's sexti

Fig. 13. Algebrai surfaes with many nodes

5 Conlusion

This program an produe good models of many algebrai surfaes inluding

those that ontain singularities and it an even �nd the handle on a ross-

ap. It o�ers onsiderable advantages over many other algorithms whih often

miss the singular points ompletely. The improvements in the polygonization

step has onsiderable improved it performane over previous versions.

The adaptation of the Java interfae has onsiderably improved the us-

ability of the software and it an now display the surfaes on most platforms

without any speial hardware or software requirements. It an also be used

as a stand-alone program on windows mahines without needing an open In-

ternet onnetion. This greatly opens up the potential of the program as it

ould easily be used as an eduational tool in shools and olleges.

The adoption of the lient-server system was primarily motivated by ease

of porting. The original ode was written in C and it would have been a
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onsiderable task to onvert this to Java. Adapting the ode to run as a server

and produe JVX format models was relatively straightforward. This system

does have the advantage of making installation trivial. The system does also

establish the program as a mathematial server whih ould potentially be

used by other appliations and inorporated into larger programs.

Whilst the models are visually good they are not always topologially

orret. There are inherent problems with the algorithm as the Bernstein

test for zeros of polynomials is too week and an inorretly identify regions

as ontaining zeros. This is partiularly evident in the detetion of singu-

lar points around the more ompliated singularities suh as the swallowtail

surfae. Some improvement ould be made by paying more attention to the

behaviour of derivatives around the singular points. One possible path for

improvement is to use a partile based approah [14,15℄ where a set of par-

tiles surrounding the surfae is allowed to onverge to the surfae. Another

method might be to try to determine the type of singularity and use that

information to inform the polygonization.

The approah we have taken here an be ontrasted with ray-traing

approahes [5,7℄. They produe single high quality images from a single di-

retion. The image quality of suh algorithms is better than those produe

by our algorithm. However produing a 3D model whih an be rotated and

saled an give a better feel for the surfae and an allow partiular points

to be inspeted.

Oliver Labs has integrated our program with the surf ray-traer [5℄: First

the 3D model is alulated and rotated to produe a good view of the surfae.

The viewing parameters are then passed to surf to generate a high quality

image from that diretion.

There are several extensions to the pakage and the algorithm has been

adapted to produe algebrai urves in 2D and 3D. The applet an be found

online at http://www.omp.leeds.a.uk/pfaf/lsmp/SingSurf.html and

http://www.javaview.de/servies/algebrai/.
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