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Introduction

In this paper we will study various signi�cant curves on surfaces, in particular

the ridges and sub-parabolic lines. Whereas the parabolic lines capture the

second derivative information about a surface, the ridges and sub-parabolic

lines capture the third derivative information about the surface.

One important feature of the ridges and sub-parabolic lines is that, like the

parabolic curves, they are robust, i.e. if we slightly deform the surface then the

curve will deform. This contrasts with the geodesics and lines of curvature of

the surface which reform as the surface is deformed. Hence it makes sense to

observe how a sub-parabolic line changes in a family of surfaces but it does not

make sense to study how a line of curvature changes.

The ridges can be thought of as the set of points where one of the principal

curvatures has an extremal value (max or min), when moving along a line of

curvature of the same colour. They can also be thought of as the pre-image of

cuspidal edges on the focal surface. I. Porteous �rst gave the curves a thorough

mathematical treatment in [12], which was expanded on in [13], by studying the

singularities of the distance squared map. An alternative approach used in [4],

[21] and [2] is to consider folding maps of the surface, which captures the local

re
ectional symmetry. Two papers on ridges have previously been presented in

this series of conferences, [14] [15].

In [8], J. Koenderink recognised that ridges are signi�cant features of a

surface and they are beginning to �nd several applications. They have been

used by Thirion and Gourdon in the study of medical Magnetic Resonance

Image data [20]. G. Gordon, D. Mumford has used them for face recognition

from range data [7]. In geology the ridges appear as the hinge lines of folds,

[18].

Whilst not being as visually obvious as ridges, the signi�cance of sub-parabolic

lines is increasing. They were �rst observed as the pre images of parabolic lines

on the focal surface, hence the name. They also appear as the locus of geodesic

in
ections, of the lines of curvature. For this reason Porteous has proposed the

shorter name 
excords for these curves. We shall see later that the a recent

result of Thirion suggests an alternative characterisation: as the counter-ridges,

points where the principal curvature of one colour has an extremal value when

moving along a line of curvature of the other colour. Sub-parabolic lines can

be found by examining the pro�les of surfaces. Sub-parabolic lines have a fairly

short history, �rst being studied in terms of folding maps in [4] and [21]. In [11]

they are studied geometrically in terms of the focal surface and the distance
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squared function and experimentally where examples of the transitions were

found by computer. In [2] and [3] the transitions which occur on both curves

are discussed.

One early reference is Eisenhart [6] where an explicit equation for the Gauss-

ian Curvature of the focal surface is presented. In his recent book [16] Porteous

gives both ridges and sub-parabolic lines a thorough treatment.

In section x1 we present some basic facts about surfaces and focal surfaces.

In section x2 we present simple proofs for the characterisations of sub-parabolic

lines and ridges and also discuss the Gaussian curvature of the focal surface. Sec-

tion x3 deals with the special points which can occur on these curves, including

the highly spherical umbilic points. Some practical formulae for calculating the

curves for implicit and explicitly de�ned surfaces are discussed in section x4 as

well as some of the problems which may occur in a computer implementation.

Finally, in section x5 we discuss some of the possible applications of these curves.

Many thanks to Ian Porteous for help in the preparation of this paper.

1 Basic Geometry of Surfaces

At a generic point on a smooth surface S we can �nd two principal directions

P , Q, and two corresponding principal curvatures �

p

, �

q

such that the normal

curvature of a curve through x with tangent to P or Q is �

p

or �

q

respectively.

Furthermore, �

p

and �

q

are the extremal values of the normal curvatures for all

smooth curves through x. (The normal curvature of a curve on S with tangent

V is the curvature of the intersection of the surface and the plane containing

the normal and V .) We can give these principal directions a colour (red or

blue) to distinguish between the two. In the following let P be the red principal

direction and Q be the blue principal direction. We make no assumption about

which corresponds to the higher or lower principal curvature but the colours are

assigned consistently. It is well known that the normal to the surface, N , and

the two principal directions are all orthogonal.

We also expect to �nd isolated points on the surface where the surface closely

approximates a sphere. At these points, called umbilics, every direction through

the umbilic is principal and all the principal curvatures are equal.

We can also consider the focal surface. This consist of two sheets, the red

and blue sheet. For any point on the surface there are two points on the focal

surface f

p

, f

q

given by x + 1=�

p

N and x + 1=�

q

N . The focal surface can be

considered as the envelope of the normals to the surface. Figure 1 shows the

geometry of the surface and its focal surfaces.

A line of curvature is a curve whose tangent is always in a principal direction.

Again there are two sets of lines of curvature, red and blue, according to which

principal direction they are tangent to. The normal curvature of these curves

is always the principal curvature, but we can also �nd the geodesic curvature

of these curves which is the curvature of the curve when projected on to the

tangent plane. We can also think about the raised lines of curvature. If we take

a line of curvature on a surface, then there is a corresponding line on each sheet

of the focal surface. These lines are called the raised lines of curvature and it

can be shown that a red line of curvature raised to the red sheet of the focal

surface is a geodesic.

1.1 Directional Derivatives

The notation will be greatly simpli�ed if we use directional derivatives. If f :

R

2

! R

n

and u = (u

1

; u

2

) is a tangent vector to R

2

, then the directional
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Figure 1: The basic geometry of a surface and its focal surfaces

derivative of f in the u direction is

df<u> = u

1

@f

@x

+ u

2

@f

@x

:

We can see that df is a linear map which is indicated by the angled brack-

ets. This notation can be extended to higher dimensions and also to higher

derivatives. The second directional derivatives of f in directions u = (u

1

; u

2

),

v = (v

1

; v

2

) is

d

2

f<uv> = u

1

v

1

@

2

f

@x

2

+ (u

1

v

2

+ u

2

v

1

)

@

2

f

@x@y

+ u

2

v

2

@

2

f

@

2

y

:

We observe that this map is a symmetric bilinear form.

1.2 The First and Second Fundamental Forms of a Surface

For a surface S parametrised by s : R

2

! R

3

, with normal N . We can de�ne

two symmetric bilinear forms

I

s

<u; v> = ds<u> � ds<v>;

II

s

<u; v> = ds<u> � dN<v>

= �d

2

s<uv> � n;

called the �rst and second fundamental forms of the surface S. The eigen-vectors

of the equation II

s

<u; v> = �I

s

<u; v> give the principal directions p, q. These

vectors lie in the parameter space, and we can choose them so that P = ds<p>,
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and Q = ds<q> are unit length vectors. We have the following results

I

s

<pp> = 1;

I

s

<pq> = 0;

I

s

<qq> = 1;

II

s

<pp> = �dN<p> � P = �

p

;

II

s

<pq> = �dN<q> � P = �dN<p> �Q = 0;

II

s

<qq> = �dN<q> �Q = �

q

:

As N � P = 0 and N �Q = 0 we can deduce

dP<p> �N = �

p

;

dP<q> �N = 0;

dQ<p> �N = 0;

dQ<q> �N = �

q

:

2 The geometry of ridges and sub-parabolic lines

In this section we give precise de�nitions for the ridges and sub-parabolic lines,

and also show that the three characterisations are equivalent. We begin with a

simple lemma about the focal surface.

Lemma 1 The tangents to the images of the lines of curvature on the red (p)

sheet of the focal surface are

df

p

<p> = �d�

p

<p>=�

2

p

N;

df

p

<q> = �d�

p

<q>=�

2

p

N + (�

p

� �

q

)=�

p

Q:

In particular, P is normal to the focal surface.

Proof

Now

(f

p

(x) � s(x)) � P = 0;

(f

p

(x)� s(x)) �Q = 0;

(f

p

(x)� s(x)) �N = 1=�

p

:

Di�erentiating in the r direction gives

(df

p

<r>� ds<r>) �P + 1=�

p

N � dP<r> = 0;

(df

p

<r>� ds<r>) �Q+ 1=�

p

N � dQ<r> = 0;

(df

p

<r>� ds<r>) �N + 1=�

p

N � dN<r> = �d�<r>=�

2

p

:

Substituting r = p and r = q gives

df

p

<p> � P = 0;

df

p

<q> � P = 0;

df

p

<p> �Q = 0;

df

p

<q> �Q = 1� �

q

=�

p

;

df

p

<p> �N = �d�<p>=�

2

p

;

df

p

<q> �N = �d�<q>=�

2

p

:
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P Q

N

ridge

cuspidal edge

Figure 2: The geometry of the surface and focal surface about a ridge point.

2

We can now make the de�nition of ridges and sub-parabolic lines more pre-

cise.

De�nition 2 A point x lies on a red-ridge when d�

p

<p> is zero. A point x

lies on a red-subparabolic line when d�

q

<p> is zero.

We can see from Lemma 1 that the condition for ridges, df

p

<p> = 0, implies

that the focal surface is singular at ridge points, it can be shown that in general

we have a cuspidal edge on the focal surface (Fig. 2). For sub-parabolic lines

we have the following result, part 3 of which was �rst proved by Thirion.

Theorem 3 Away from ridges, parabolic lines and umbilics, the following state-

ments are equivalent.

1. The red-sheet of the focal surface has a parabolic line at f

p

(x).

2. The geodesic curvature of the blue-line of curvature is zero at x.

3. d�

q

<p> = 0 at x.

Each of these being equivalent to x lying on a red sub-parabolic line.

Proof

We will show that all three statements are equivalent to dP<q> �Q = 0.

Now P is normal to the red sheet of the focal surface so for a parabolic line

we require dP<r> = 0 for some vector r. Now dP<r> �N = �P � dN<r> =

II<pr> which is zero only when r = q or when �

p

is zero, which is non generic.
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Figure 3: The geometry of the surface and focal surface about a sub-parabolic

line.

As P is of unit length we see condition for a parabolic line on the focal surface

is dP<q> �Q = 0.

Di�erentiating P � Q = 0 shows that dQ<q> � P = �dP<q> � Q. Now,

dQ<q>�P = 0 is the condition for the blue line of curvature to have an in
ection,

which proves part 2 of the theorem.

For the �nal part we observe that on the blue sheet of the focal surface

df

q

<p> � dQ<q> = II

f

q

<pq>

= df

q

<q> � dQ<p>

= �N � dQ<p>

= �II<pq>

= 0;

where II

f

q

is the second fundamental form of the blue sheet of the focal surface.

Resolving this equation into the N and Q components gives

(df

q

<p> �N )(dQ<q> �N ) + (df

q

<p> � P )(dQ<q> � P ) = 0:

Generically neither dQ<q> �N nor df

q

<p> � P is zero so we see dQ � P = 0 is

equivalent to df

q

<p>�N = 0. FromLemma1 we see this implies d�

q

<p> = 0. 2

The generic geometry of the surface and the focal surface for a sub-parabolic

line is illustrated in �gure 3. Note how we have a parabolic line on the focal

surface and that the line of curvature has an in
ection. We can gain further

information about the surface by considering the Gaussian Curvature of the

focal surface.
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Theorem 4 The Gaussian curvature of the focal surface is

K

f

=

dP<q> �Q

d�

p

<p>

�

4

p

(�

p

� �

q

)

:

Proof

The Gaussian curvature can be found by calculating (ln�m

2

)=(EG� F

2

)

where

E = df

p

<p> � df

p

<p>;

F = df

p

<p> � df

p

<q>;

G = df

p

<q> � df

p

<q>;

l = dP<p> � df

p

<p>;

m = dP<q> � df

p

<p>;

n = dP<q> � df

p

<q>:

Now

df

p

<p> =

�d�

p

<p>

�

2

p

N;

df

p

<q> =

�d�

p

<q>

�

2

p

N +

�

1�

�

q

�

p

�

Q;

dP<p> = (dP<p> �Q)Q+ �

p

N;

dP<q> = (dP<q> �Q)Q:

Hence

E = (d�

p

<p>)

2

=�

4

p

;

F = d�

p

<p>d�

p

<q>=�

4

p

;

G = (d�

p

<q>)

2

=�

4

p

+ (�

p

� �

q

)

2

=�

2

p

;

l = �d�

p

<p>=�

p

;

m = 0;

n = (dP<q> �Q)(�

p

� �

q

)=�

p

:

Substituting these values into the equation for Gaussian curvature proves the

result. 2

There are several points to note from this equation.

Corollary 5 The Gaussian curvature generically changes sign through zero

when we cross a parabolic line on the focal surface.

Corollary 6 The Gaussian curvature generically changes sign through in�nity

when we cross a cuspidal edge on the focal surface.

This second corollary runs counter to what happens in the standard model

of a cuspidal edge, (x

2

; x

3

; y), where the Gaussian curvature is everywhere zero

(Fig. 4a). For symmetrical cuspidal edges, like (x

2

+ y

2

; x

3

; y), the curvature

is the same sign on either side of the edge (Fig. 4b). In terms of the Gaussian

curvature the edge (x

2

; x

3

+ y

2

; y) is more generic, as the curvature changes

sign, through in�nity, as we cross the edge. We can attach three numbers to

a cuspidal edge to describe the way it curves. Let 
(t) be a parameterisation

of a ridge, with tangent r = 


0

(t), such that df

p

<r> is of unit length. Let
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(a)

(b)

(c)

Figure 4: The standard model of a cuspidal edge (a), a symmetric cuspidal edge

(b), and a more generic cuspidal edge (c)

A = df

p

<r>, B = P , and C = B ^ A. We can write the derivatives of these

vectors with respect to t as

0

@

A

0

B

0

C

0

1

A

=

0

@

0 � g

�� 0 �

�g �� 0

1

A

0

@

A

B

C

1

A

:

The three numbers �, g, � describe the way in which the cuspidal edge curves;

� corresponds to the normal curvature of a curve on a surface, g corresponds to

the geodesic curvature and � corresponds to the \geodesic torsion". See section

x1 and also [8] p197.

Lemma 7 For a generic point on a cuspidal edge of a focal surface, the normal

curvature of the edge, �, is non-zero. Furthermore, away from swallowtail and

umbilic centres, � is zero if and only if dP<q> �Q is zero.

Proof

Let r = �p+ �q, we can write

� = �B

0

�A

= �dP<r> � df

p

<r>

= �II

f

p

<rr>

= ��

2

II

f

p

<pp> � 2�� II

f

p

<pq> � �

2

II

f

p

<qq>

= ��

2

(dP<q> �Q)(�

p

� �

q

)=�

p

:

Now � = 0 implies we have an A

4

(swallowtail) point, and �

p

= �

q

implies we

are at an umbilic point. Hence away from swallotail points and umbilics � is

zero if and only if dP<q> � Q is zero. This generically only occurs at isolated

points on the cuspidal edge. 2
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3 Special Points on the Surface

We now examine the special points which lie on the ridges and sub-parabolic

lines. There are a number of circumstances which can occur:

1. The ridge is tangent to a line of curvature.

2. The sub-parabolic line is tangent to a line of curvature.

3. The ridge and sub-parabolic line cross.

4. The ridge crosses a ridge of the other colour.

5. The sub-parabolic line crosses a sub-parabolic line of the other colour.

6. Umbilic points.

We shall now examine these situations in more detail.

It is well known that when the red-ridge is tangent to a red-line of curvature

(Fig. 5a), we have a swallowtail point on the red-sheet of the focal surface, see

[13]. This can be easily seen by noting that when the tangent to the ridge r is

in the principal direction p then df

p

<r> is zero, so the cuspidal edge must be

singular. In fact there are two di�erent types of swallowtail points depending

on how the regions of positive and negative Gaussian curvature are arranged.

One type of swallowtail is shown in �gure 6a.

We have a similar result when the red-sub parabolic line is tangent to a

blue-line of curvature (Fig. 5b). Instead of a swallowtail point we have a cusp of

Gauss (Fig. 6b), whose dual is a swallowtail point. A cusp of Gauss is a point

on a parabolic line where the parabolic line is tangent to the principal direction

with zero principal curvature. This can also be thought of as a point where a

ridge on the focal surface crosses a parabolic line.

Theorem 8 The following three statements are equivalent:

1. The red-sub-parabolic line is tangent to the blue-line of curvature.

2. The blue line of curvature has a higher geodesic in
ection.

3. The red sheet of the focal surface has a cusp of Gauss.

Proof

First we shall prove that 1 and 2 are equivalent. For a higher geodesic in
ection

along a line of curvature we require that both the geodesic curvature and its

derivative are zero. Now the geodesic curvature of a blue line of curvature is

g = dP<q> �Q and for a higher geodesic in
ection we require that dg<q> = 0.

The equation of the sub-parabolic line is g = 0 hence the tangent, r, satis�es

dg<r> = 0. When the sub-parabolic line is non singular, the case here, this

equation is only satis�ed for one direction r. We can instantly see that when

the sub-parabolic line is in the Q direction then we have the condition for a

higher in
ection. To show the result the other way requires the observation

that d(dP<q> �Q)<p> is generically non zero.

Now consider the parabolic line on the red-sheet of the focal surface. When

the sub-parabolic line is tangent to a blue-line of curvature then the parabolic

line on the focal surface is tangent to df

p

<q> which is the principal direction

on the focal surface. This is the condition for a cusp of Gauss. 2

When a red-sub-parabolic line is tangent to a red line of curvature (Fig. 5c),

we observe that the parabolic line on the focal surface is tangent to N . The

9



Blue lines 
of curvature

Red sub−
parabolic
line

Red lines 
of curvature

Red lines 
of curvature

Red sub−
parabolic
line

Red Ridge

Red ridge

Blue sub−
parabolic
line

Red ridge

Red sub−
parabolic
line

(a) (b)

(c) (d)

(e)

Figure 5: The arrangement of ridges, sub-parabolic lines and lines of curvature

at various special points on a surface

10



N

Q
P
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P Q

N

P

Q

(d)

(e)

Parabolic line

Parabolic line

(a)
N

P

Q

P

Q

N
(a) (b)

(c)

Parabolic line

Figure 6: The focal surface for various special points on the surface

parabolic line is tangent to a principal direction, but this does not give a cusp

of Gauss as the direction is not the one with zero principal curvature (Fig. 6c).

When a red-ridge crosses a blue sub-parabolic line (Fig. 5d), we observe that

d�

p

<r> = 0 for all tangent vectors r. The cuspidal edge on the red sheet of

the focal surface will be tangent to Q (Fig. 6d).

When a red-ridge crosses a red-sub-parabolic line (Fig. 5e), we see from

Lemma 7 above that a parabolic line will passes through the cuspidal edge and

the normal curvature of the edge will change (Fig 6e). The Gaussian curvature

of the focal surface is K = �

p

�

q

so at these points dK<p> = 0. At such points

the surface will be locally symmetric about the plane containing N and Q. We

will get a higher degree of symmetry when the lines are tangent. A special

case of this is when the whole surface is symmetrical about a plane. The line

of symmetry will be both a ridge and a sub-parabolic line, as well as a line of

curvature and a geodesic.
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a

b

c

d

e

f

g

h

birth of umbilics

Figure 7: The division of the �-plane according to the type of umbilic.

3.1 Umbilics

Umbilics are points which closely approximate a sphere: every direction through

the umbilic is principal and the corresponding curvatures are all equal. A Monge

form parametrisation of an umbilic is

z =

1

2�

(x

2

+ y

2

) +

1

6

(ax

3

+ 3bx

2

y + 3cxy

2

+ dy

3

) + O(4):

The type of the umbilic is determined by the cubic terms a, b, c, d. By allowing

rotation and scaling of the surface we can represent these cubic terms by a single

complex number � = (a+ c+ i(b+ d))=(!�!

2

), where ! is one of the cube roots

of � = (a�3c+i(d�3b)). Actually we need to include a line at in�nity, but this

will not concern us here. Furthermore, the pattern of ridges, sub-parabolic lines

and lines of curvature is determined by where � lies in the diagram shown in

�gure 7. The corresponding patterns of lines of curvature are shown in �gure 8,

these are sketched from the computer generated examples �rst shown in [11].

The patterns of the curves has been theoretically determined in [4, 21, 2, 11].

Inside the smaller circle, the ridges have alternate ordering (red, blue, red,

blue, red, blue). On the smaller circle two of the ridges are tangent. Outside

the circle but inside the small tri-cusp �gure the ordering is red, red, red, blue,

blue, blue. As we cross the smaller hypercycloid, we have a cusp transition on

the ridges, and the number of ridges drops from three to one. Furthermore,

the type of the umbilic changes from being an elliptical umbilic to being a

hyperbolic umbilic, the transitionary case is called a parabolic umbilic. Inside

this hypercycloid we observe that for the red-sheet of the focal surface, which

is an elliptical umbilic, the ordering of cusp edges and parabolic lines is: cusp,

cusp, parabolic, cusp, parabolic, parabolic.

Outside the smaller hypercycloid we have an hyperbolic umbilic, with only

one ridge running through it. However the pattern of sub-parabolic lines and

lines of curvature change. There are three patterns of lines of curvature, the Star,

Monstar, and Lemon, these were discovered by Darboux [5], named by Hannay,

and their con�guration has been proved in [19]. An elegant proof has receintly

been demonstrated in [1]. It can be shown, [11][pp144{145], that except at the

birth of umbilics, the sub-parabolic lines are tangent to the exceptional lines of
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(a)
(b) (c)

(d)
(e)

(f)

(g) (h)
red ridge

blue ridge

red sub−
parabolic line

blue sub−
parabolic line

Figure 8: The di�erent patterns of ridges and sub-parabolic lines at umbilics

curvature which pass through the umbilic. Hence we can use information from

the sub-parabolic lines to determine the pattern of lines of curvature and vica-

versa. Inside the larger circle the sub-parabolic lines have alternate ordering,

and the lines of curvature form the star pattern. Between the large circle and

the outer hypercycloid, we have a red, red, red, blue, blue, blue ordering, and

outside the outer hypercycloid there is only one sub-parabolic line which changes

from red to blue.

The three straight lines correspond to symmetrical umbilics, here one of the

ridges and one of the sub-parabolic lines are tangent.

The larger circle is special, and corresponds to the birth of umbilics. Um-

bilics are born and annihilate in pairs, one of which has a star pattern of lines

of curvature, the other has a monstar pattern. The moment of the birth cor-

responds to an umbilic lying on this circle. The pattern of subparabolic lines

during such transitions has only reciently been discovered by F.Tari [2] and my-

self. One such transition is shown in �gure 9. There are two other possibilities,

either: (a) two ellipses shrink to a point and then disappear, or b) there are �ve

lines through the transitional umbilic which break up into two sets of hyperbola.

There are actually three di�erent varieties of this last case determined by the

ordering of the colours of the sub-parabolic lines.

4 Implementation

Many of the results and diagrams presented here have been derived from a

computer program for calculating ridges, sub-parabolic lines and focal surfaces.

This program is described in detail in [11]. The main problems we encounter

are �nding general formulae for calculating the curves and problems associated

with �nding orientations for the principal directions.
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two umbilics transitional umbilic no umbilics

Figure 9: The pattern of sub-parabolic lines for one type of the birth of umbilics

transition.

4.1 Practical formulae for calculating ridges and

sub-parabolic lines

The above formulae for ridges and sub-parabolic lines are quite di�cult to cal-

culate explicitly, as they involve di�erentiating the principal curvatures. Below

we present formulae for these curves for surfaces which are de�ned either as a

parametrised surface by s : R

2

! R

3

, or by an implicit equation g(x) = 0 where

f : R

3

! R.

For a parametrised surface we use the distance squared map V : R

2

�R

3

!

R given by

V (x; c) =

1

2

(s(x) � c) � (s(x) � c):

This gives half the square of the distance between the point on the surface s(x)

and a general point in space c. Let V

1

, V

2

and V

3

be the �rst, second and

third order directional derivative of V with respect to x, i.e. we calculate the

derivatives keeping c �xed. We have

V

1

<u> = (s(x) � c) � ds<u>;

V

2

<uv> = (s(x) � c) � d

2

s<uv> + ds<u> � ds<v>;

V

3

<uvw> = (s(x) � c) � d

3

s<uvw> + d

s

<uv> � ds<w>

+d

2

s<uw> � ds<v> + d

2

s<vw> �<u>:

We can show, see [11, pp124{130], that

df

p

<p> �N =

1

�

p

V

3

<p

3

>;

dP<q> �Q = 2d

2

s<pq> �Q�

V

3

<pq

2

>

V

2

<q

2

>

;

where c = f

p

(x). In essence these equations are derived by di�erentiating the

equation V

2

<p�> = 0 with c = f

p

(x) in the directions p and q. In practice we

use the two formulae

V

3

<p

3

> = 0;

2V

2

<q

2

>d

2

s<pq> �Q� V

3

<pq

2

> = 0

to determine the red ridges and sub-parabolic lines. The principal direction can

be calculated by solving the eigen value problem,

�

l m

m n

��

p

1

p

2

�

= �

p

�

E F

F G

��

p

1

p

2

�

;
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where E = I<ii>, F = I<ij>, G = I<jj>, l = II<ii>, m = II<ij>,

n = II<jj>, and p = p

1

i+ p

2

j. This can be expressed as II<p�> = �

p

I<p�>

or V

2

<p�> = 0. One point to note is that the equations for the ridges and sub-

parabolic lines depend on the orientation of the principal directions. However

the eigen value problem does not give us oriented vectors.

For an implicitly de�ned surface, g(x) = 0, the expressions are much simpler.

We have

dg<u> = �N � u;

dg<P> = 0;

d

2

g<uv> = d�<u>N � v + �dN<u> � v;

d

2

g<PP> = �dN<P> � P = �

p

dg<N>;

d

2

g<PQ> = 0:

Di�erentiating the second and fourth of these equations in the direction u gives

d

2

g<Pu>+ dg<dP<u>> = 0;

d

3

g<PPu> + 2d

2

g<PdP<u>> = d�

p

<u>dg<N>+ �

p

d

2

g<Nu>

+�

p

d

2

g<dN<u>>:

We can eliminate dP<u> �N from these to show

dg<N>d

3

g<PPu>� 2d

2

g<PN>d

2

g<Pu> � d

2

g<Nu>d

2

g<PP>

= (dg<N>)

2

d�

p

<u>:

Multiplying by (dg<N>)

2

and substituting u = P and u = Q gives us equations

for a red ridge

dg<N>d

3

g<PPP> � 3d

2

g<PN>d

2

g<PP> = 0;

and a blue sub-parabolic line

dg<N>d

3

g<PPQ>� d

2

g<QN>d

2

g<PP> = 0:

Likewise the equation for a blue ridge line is

dg<N>d

3

g<QQQ> � 3d

2

g<QN>d

2

g<QQ> = 0;

and the equation for a red sub-parabolic line is

dg<N>d

3

g<PQQ>� d

2

g<PN>d

2

g<QQ> = 0:

Again we have an eigen-value problem to �nd the two principal directions.

We require dg<Q> = 0, d

2

g<PQ> = 0 and P �Q. Treating each of these as a

map from R

3

to R we have M (P )Q = 0 where M (P ) is the matrix

0

@

dg<i> dg<j> dg<k>

d

2

g<Pi> d

2

g<Pj> d

2

g<Pk>

P � i P � j P � k

1

A

We can solve the equations det(M (P )) = 0, dg<P> = 0, P � P = 1 to give us

our unit length principal directions.
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vector field vanishes
along this line

Figure 10: A vanishing oriented principal direction �eld about an umbilic

4.2 Problems with orientation

The tasks of �nding the ridges or sub-parabolic lines on a parametrised surface is

essentially the task �nding the zero set of V

3

<ppp> or V

3

<pqq>�2d

2

s<pq> �Q,

which can be achieved by looking for changes in sign. These equations depend

on the orientation of the principal directions. If we take the opposite orientation

for the principal direction then V

3

<ppp> will change in sign. About an umbilic

the index of the principal direction �eld is �

1

2

. Hence it is impossible to �nd

a continuous, non-vanishing oriented principal direction vector �eld. We can

however �nd two vanishing oriented principal direction vector �elds from the

eigen value problem say p = (a(x); b(x)) and p = (c(x); d(x)). Each of these

equations will give zero length vectors along some line radiating out from the

umbilic. The only time both �elds vanish at the same point is at umbilics. On

either side of the line the principal directions will point in opposite directions

(Fig. 10). Moreover, we can see that the ridges cannot be the zero set of any

bounded function as there is always an odd number of ridges at each umbilic.

If we want to �nd a solution to V

3

<ppp> = 0 along a line segment, we �rst

calculate the principal direction at each point using the �rst of the expressions.

We check that they both point in the same direction by taking the dot product.

If the dot product is close to 1, we assume they have the same orientation, and

we can test for zeros by seeing if the sign of V

3

<ppp> changes. If the dot product

is close to �1 then we assume the vector has 
ipped direction. In such a case

we use the other expression for the principal directions, and repeat the process.

It is possible for the dot product to be close to zero, which may happen near

umbilics. In such a situation we split the line segment into two halves, testing

each half for zeros. Once we have a continuous non-vanishing oriented vector

�eld we can test the signs of V

3

<ppp> at the end points. If the two signs are

di�erent we can use a standard binary sub-division algorithm to converge to the

solution.

4.3 Tracing the Curves

To �nd the complete curve, we use a zero following algorithm. A fairly novel

approach bassed on triangles has been used. Given a triangle which has a

solution on one side (Fig. 11a) we expect to �nd one solution on the one of the

other two sides (Fig. 11b,c). We can then construct a new triangle and repeat

the process. If there is either 1 or 3 solutions round the triangle this indicates

the presence of an umbilic. The precise location of the umbilic can be found by

minimising the function �

p

� �

q

which is zero at the umbilic.
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Figure 11: Following a sub-parabolic line

Figure 12: The ridges and sub-parabolic lines for the bumpy cube

Starting points for the curves can be found in two ways. If we take a circle

bounding the patch we can step round the circle looking for zeros. We can then

use these zeros as starting points. We know that ridges and sub-parabolic lines

pass through umbilics. So we can use the umbilics, found earlier in the zero fol-

low routine as starting points. Actually we take a small circle round the umbilic

and start from the zeros on that circle. This still leaves the problem of �nding

closed loops on the ridges such as may be found in the non-generic A

4

transition,

(see [13]). Here we can follow the curve 3V

3

<ppq> � V

4

<pppp>V

2

<qq> = 0

which passes through A

4

points.

Another method for �nding the curves is the marching line algorithm which

treats the ridges as the intersection of two implicitly de�ned surfaces [20]. Mike

Puddephat [17] has recently been expanding on the work of Markatis [10], in

�nding the ridges and sub-parabolic lines on bumpy spheres, which are implicitly

de�ned surfaces of the form f = x

2

+ y

2

+ z

2

+ �C(x; y; z) � 1 = 0, where C

is a cubic in x, y and z. For small values of � we can closely approximate

the bumpy sphere by a unit sphere, and �nd the points on the sphere which

satisfy d

3

f<PPP>df<N> � 3d

2

f<PP>d

2

f<PN> = 0. A similar technique

as above has been used to calculate the principal directions this time using the

implicit formulae. The bumpy spheres provide a rich family of examples for

the patterns of ridges and sub-parabolic lines. The pattern of ridges for all

the di�erent types of cubics, including the bumpy cube (cubic term xyz), the

bumpy orange (x

3

� x

2

y), the bumpy tennis ball (x

2

y), and the bumpy sphere of

revolution (x

3

), are shown in [16]. In the book the colouring of the bumpy cube

is incorrect, the correct version, together with the pattern of sub-parabolic lines

are shown in �gure 12. These pictures have been produced by Mike.
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Figure 13: The two types of points on a surface, according to the Gaussian

curvature of the focal surface

5 Applications

There are several applications for which the ridges and sub-parabolic lines can

be used. One application is to use them for constructing a skeleton of a surface.

Rather than using storing all the points on a surface we can just store the

points on the curves, greatly reducing the amount of data needed. In [20, 7]

such skeletons using only parts of the ridge lines have been used to successfully

to compare faces. The problem of reconstructing a surface from such a skeleton

has not yet been addressed. The curves may also be used for a measure of

\goodness" or \quality" of the surface, the simpler the pattern of ridges and

sub-parabolic lines the better. Another method for measuring quality is given

in [9].

The formula for the Gaussian curvature of the focal surface gives us a way of

segmenting the surface into two parts; we can label points on the surface accord-

ing to the the sign of the curvature of the focal surface. To see the geometrical

meaning of this segmentation we orientate the red principal direction so that

it points in the direction of increasing principal curvature, i.e. let p be such

that d�

p

<p>>0. We now have two cases depending on the sign of dP<q> �Q

(Fig. 13). We will switch between the two cases whenever we cross a red ridge or

red sub-parabolic line. We cannot produce such a segmentation if we just look

for the sign of V

3

<ppp> or dP<q> � Q as both of these equations will change

sign if we reverse the principal directions.

One important question is, what does a sub-parabolic line look like? Whilst

a satisfactory answer has yet to be found, there are several ways we can spot

sub-parabolic points visually. If we look at the surface along some direction r,

then the apparent contour of the surface is the set of all points where r lies in

the tangent plane. The pro�le is the projection of the apparent contour onto

a plane normal to r (Fig. 14). If r is the red principal direction at a point

x on the apparent contour then the apparent contour will be tangent to the

blue principal direction. Furthermore, the curvature of the pro�le is equal to

the blue principal curvature. If we now consider a motion of the surface so

that r is always tangent to the line of curvature through x, then we will have

a one parameter family of pro�les. The curvature of these pro�les will change

according to d�

q

<p>. If x lies on a red-subparabolic line then we observe to

curvature of the pro�le has an extremal value at x. The the curvature of the

pro�le will appear to tighten and then relax, as shown in �gure 15.

Another way of spotting sub-parabolic points is to examine the geodesic

curvature of the apparent contour. If we are looking along a principal direction

and x is a sub-parabolic point then the apparent contour will have an in
ection

at x. For both these methods we need a one parameter family of apparent
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Figure 14: The pro�le and apparent contour of a surface at a sub-parabolic

point

Figure 15: The transition in the pro�le of a surface as we pass through a point

on the sub-parabolic line
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contours to determine whether a point lies on a sub-parabolic line. A two

parameter family should give the whole line.
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